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synopsis 
A generalized, empirical equation is proposed which takes into account the dependence 

of elongational viscosity on both elongation rate and temperature. From this, a mathe- 
matical model for simulating the melt spinning process has been developed. The model 
has been tested against experimentally observed velocity profiles in fibers of polystyrene 
and high-density polyethylene spun into an isothermal chamber. It has been found that 
predicted velocity profiles agree well with experimentally observed ones. The mathe- 
matical model has been used to predict velocity and temperature profiles in fibers spun 
into a cooling medium. The simultaneous solution of momentum and energy balance 
equations by means of a numerical integration scheme has generated important informa- 
tion such as distributions of force components involved in spinning and distributions of 
the total rate of heat transfer along the spinning way. 

INTRODUCTION 

In a previous paper,' which was the first of this series, the authors pre- 
sented some experimental measurements of elongational viscosity of several 
polymers in the molten state. The two main objectives of that study were 
to experimentally determine the dependence of elongational viscosity on 
elongation rate, as affected by the molecular structure of the materials, and 
to isolate the effect of elongation rate from the effect of threadline cooling on 
elongational viscosity, by performing the spinning experiment isothermally. 

However, cooling of threadline is very important in commercial melt 
spinning, and careful control of the rate of cooling of molten threadlines is 
very intimately related to producing a desired quality of finished fiber. The 
rate of cooling, together with the rate of stretching, influences both the de- 
gree of molecular orientation and the rate of crystallization. Unfortu- 
nately, a t  present we do not have a clear understanding of the relationships 
between the rate of stretching and the degree of molecular orientation, and 
between it and the rate of cooling. Therefore, a rigorous analysis of the 
melt spinning process is much more complicated than it may appear to be. 
Complication comes not only from the lack of our understanding of the 
problem involved with cooling, but also from the very complicated nature 
of the elongational flow behavior of fiber-forming polymers in the molten 
state. 
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Much of the previous studies therefore were concerned with certain as- 
pects of the problems involved in melt spinning. S0me~J8~ were concerned 
with the heat transfer between a moving threadline and the coolant; 
s0me,6~'3~~ with molecular orientation in a filament as affected by various 
spinning conditions; others, ' s 8  with the deformation of a molten threadline 
spun into an isothermal chamber; and still  other^,^*'^^" with both deforma- 
tion and heat transfer together. In their analysis of nonisothermal spin- 
ning of polyester, Kase and MatsuoO assumed that elongational viscosity de- 
pends on temperature alone, but not on elongation rate. These authors 
then determined the temperature dependence of elongational viscosity from 
the measurements of temperature profiles along the spinline. Unfortu- 
nately, they were not able to check the validity of their assumption. 

In  the present paper, which is the second of this series, we first propose a 
generalized, empirical equation of elongational viscosity based on the cur- 
rently available experimental results in the literature. We then present 
our analysis made recently for simulating nonisothermal melt spinning pro- 
cess. The analysis involves the numerical integration of the momentum and 
energy balance equations. Computations have been carried out to simulate 
our recent spinning experiments using low-density polyethylene, high-den- 
sity polyethylene, and polystyrene. 

A GENERALIZED EMPIRICAL EQUATION 
OF ELONGATIONAL VISCOSITY 

Rate Dependence of Elongational Viscosity 

Many studies12-16 have been reported in the literature in which efforts 
were made to derive theoretical expressions for elongational viscosity using 
various forms of constitutive equations. It is worth noting that almost all 
of the theoretical studies assumed constant elongation rate and yet give 
rate-dependent expressions yielding values of elongational viscosity which 
increase with elongation rate. 

On the other hand, it is not an easy matter to keep the elongation rate 
constant during an experiment. There are some resear~hers'~J~ who at- 
tempted to control experimental conditions so that constant elongation rate 
could be realized. However, recent experimental studies's8 show that, in 
melt spinning, elongation rate varies along the spinway. It should be 
noted that in melt spinning, one is interested in controlling stretch rate 
rather than elongation rate. In  fact, studies of Acierno et a1.8 and Han 
and Lamonte' show that elongation rate may increase or decrease along the 
spinway, depending on the material being spun, and that elongatfonal vis- 
cosity also may increase or decrease with elongation rate or stay constant 
independent of elongation rate. Figure 1 gives some representative results 
in the recent paper by Han and Laponte.' Hence, in view of the experi- 
mental fact that in melt spinning the assumption of constant elongation rate 
may not hold, an analysis of the melt spinning process requires a more re- 
alistic rate-dependent expression for elongational viscosity. 
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Fig. 1. Plots of elongational viscosity vs. elongation rate of polymer melts under isother- 
mal spinning conditions. 

However, a rigorous theoretical analysis of the elongational flow of fiber- 
forming materials is very difficult, largely for the following two reasons. 
One is that many of the fiber-forming polymers, if not all, are viscoelastic 
in the molten state and have large relaxation times. Therefore, a choice of 
constitutive equation, although somewhat arbitrary, requires the considera- 
tion of fairly complicated models. Another is that a correct description of 
the rheological properties of a material point in the threadline requires the 
prehistory of deformation of the same material point. It is extremely diffi- 
cult, if not impossible, to analytically describe all the prior deformation of 
the material point in question, including that inside the spinnerette holes. 
The importance of the prehistory of deformation has been very nicely dem- 
onstrated in a recent experiment by Chen et al.l9 

In view of the complicated nature of the purely theoretical approach, we 
propose here a generalized, empirical equation for elongational viscosity : 

og. the basis of the currently available experimental data derived by various 
investigators.' ,*~6--20 Here, qo denotes zero-shear viscosity, dv,/dz denotes 
elongation rate, and a, b, and q are constants characteristic of the materials. 
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Fig. 2. Schematic of elongational viscosity vs. elongation rate behavior. 

Figure 2 gives a sqhematic representation of eq. (1). Special cases of eq. 
(1) worth considering are : 

Case 1. Setting a = 1 and b = 0 reduces eq. (1) to 

qS = 370 (2) 

which is a well-known expression due to Trouton.21 Equation (2) repre- 
sents region I in Figure 2. 

Case 2. Setting a = 0 and taking b 2 1 and q > 1 reduces eq. (1) to 

which represents region I1 in Figure 2. It is seen that in region 11, q R  in- 
creases with elongation rate dv,/dz. 

Case 3. Setting a = 0 and q = 1 and taking b > 1 reduces eq. (1) to 

q E  = 3qob > 310 (4) 

which represents region 111 in Figure 2. It is important to note that in re- 
gion 111, q g  is constant, independent of elongation rate dv,/dz, but its mag- 
nitude is larger than that of 3q0, the case of a Newtonian fluid. 

Case 4. Setting a = 0 and taking b > 1 and q < 1 reduces eq. (1) to 

which represents region IV in Figure 2. Note that, although the form of 
eq. (5) is identical to that of eq. (3), eq. (5) defines elongational viscosity de- 
creasing with elongation rate due to q < 1. 
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Case 5. Setting b = 0 and taking 0 < a < 1 reduces eq. (1) to 

V E  = 3VOa < 3% (6) 
which represents region V in Figure 2. In  region V, $g is constant again, 
but its magnitude is smaller than 3q0, the case of a Newtonian fluid. 

It can be seen from the above that other combinations of material con- 
stants a, b, and q are also possible. It should be noted also that eq. (1) can 
be used to represent two regions in Figure 2 instead of one by properly choos- 
ing combinations of the material constants. For instance, a choice of a = 
= 1, b > 0, q > 1 represents regions I and 11; a choice of a > 1, b > 0, 
q < 1 represents regions I11 and IV; and a choice of 0 < a < 1, b < 0, q < 1 
represents regions IV and V. 

A summary of experimental results by several investigators is given in 
Table I. Depending on the material tested and the experimental technique 
employed, it was possible to obtain only a part of the entire elongational vis- 
cosity curve sketched in Figure 2. Because of limitations of experimental 
techniques, it may be practically impossible for any single experimental 
technique to generate the entire q g  curve over a wide range of elongation 
rates. 

TABLE I 
A Summary of Experimental Results on the Elongational Viscosity 

of Polymer Melts by Various Investigators 

Material Investigator Dependence of V B  on +E 

Polystyrene Acierno et a1.8 
Ballman16 
Han and Lamonte1 

Low-density polyethylene Cogswell20 
Cogswell’8 
Han and Lamonte’ 
Me@ner” 

High-density polyethylene Acierno et a1.8 
Han and Lamonte’ 

Polypropylene Han and Lamonte1 

decreasing: regions IV and V 
constant: region I11 
decreasing: regions I V  and V 
increasing: region I1 
constant: region I11 
constant: region I11 
increasing: region I1 
increasing: region I1 
decreasing: region IV 
decreasing: regions IV and V 

It is appropriate to note the earlier work by Matovich and Pearson22 at  
this point. They contended that eq. (3) enhances spinnability (q > 1) 
while eq. (5) hinders spinnability (q < 1). Of course, a criterion of spinn* 
bility is somewhat arbitrary. If spinnability is defined as the ability of a 
material to form a continuous filament, a stretch ratio vL/vo may be a con- 
venient variable to use. Here, vJv0 is the ratio of the take-up velocity to 
the initial velocity of a threadline. According to this definition, it can be 
said that the larger the value of vL/vo, the more spinnable a material is. It is 
interesting to note, however, from Figure 1 that three polymers employed 
in a recent study by Han and Lamonte’ give rise to q < 1 and yet were 
found quite spinnable. For instance, polypropylene at  180°C was spun at  
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vL/vo = 212 before thread breakage, despite the fact that q is approximately 
0.117 over the range of elongation rates 0.04-0.4 sec-'. 

Temperature Dependence of Elongational Viscosity 

In  order to analyze the nonisothermal spinning process, one needs an ex- 
pression which shows how elongational viscosity varies as melt temperature 
is changed. Because a threadline gets cooled as it travels through the spin- 
way, we do not, a t  present, have a clear idea of how the effect of tempera- 
ture should be incorporated in a theoretical expression for the elongational 
viscosity of viscoelastic fluids. 

On the other hand, one can carry out a well-controlled experimental study 
which may give some insight into how elongational viscosity would vary as 
the melt temperature is changed. Very recently, Han and Lamonte' have 
carried out isothermal melt spinning experiments at different melt tempera- 
tures and have found that the Eyring-Frankel equation holds for the ob- 
served elongational viscosity. It should be noted that the experimental 
approach of Han and Lamonte' is different from that of Kase and M a t ~ u o . ~  
The former kept the temperature of the molten threadline constant in a 
heated chamber of a fixed distance in which the diameter of the threadline 
was photographically measured. They repeated these measurements at 
different melt temperatures for each run On the other hand, Kase and 
Matsuo measured the temperature profiles of a threadline which was being 
cooled and stretched simultaneously; in an experiment such as that, one 
cannot separate the temperature effect on the measured elongational vis- 
cosity from the stretching effects. In fact, Kase and Matsuoe assumed the 
effect of stretching on the elongational viscosity to be negligibly small com- 
pared to the temperature effect. This assumption may not hold in general, 
and the experience of the authors has indicated it not to be the case in their 
experiments. 

I n  view of the difficulty of taking care of the temperature effect from a 
theoretical standpoint, we propose here the following empirical expression : 

where 

a! = qo(To)e-BIRTO 

B = E / R  

E = E, + E, 

kl = @(!re) 
4 = b(To) 

Here, E is the activation energy, determined experimentally, and consisting 
of two parts: one, the shear flow activation energy E,, which comes from 
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the zero shear viscosity; and the other, the elongational flow activation 
energy E,; and kl and kz are the values of a and b, defined in eq. (l), eval- 
uated at  some reference temperature To. In  proposing eq. (7), we have 
assumed that the two constants a and b in eq. (1) are given by the Eyring- 
Frankel equation under the elongational flow field: 

a(T) = a(To)eEe/R(l/'-lIT~) (9) 

(10) 
In  the analysis to follow we shall use eq. (7), together with the momen- 

tum and energy balance equations, in order to simulate the nonisothermal 
melt spinning process. 

E,/R(I/T - l/To). b(T) = b(To)e 

ANALYSIS OF NONISOTHERMAL MELT SPINNING 

Referring to Figure 3, we shall consider region 11, in which a molten 
threadline is stretched and cooled between the spinnerette and the take-up 
device. We can then write the following differential equations using cylin- 
drical coordinates : 
Equation of continuity : 

r-Component equation of motion: 

z-Component equation of motion: 

Threadhe f Spnneretle 

r 

3 Regb I (Disorientation of 
mdecules ) 

Region I[ (Stretching 
and m a g )  

- 
Take-up device 

Fig. 3. Schematic of melt spinning process. 
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Equation of energy : 

r 

In eqs. (11)-(14), Su are the ijth components of stress; p is the fluid den- 
sity; C, is the heat capacity, g is the gravitational constant; qr and q, 
are the r- and z-components of heat flux, respectively; vr and v ,  are r- and 
z-components of velocity, respectively; and T is the fluid temperature. 

If we now make the following simplifying assumptions: (a) v ,  depends on 
z only, i.e., v ,  = v,(z);  (b) T depends on z only, i.e., T = T(z ) ;  (c) q, is 
negligibly small; (d) C, is independent of T ;  and (e) the viscous heat dissi- 
pation is negligible, which makes the bracketed term on the right-hand side 
of eq. (14) drop out, then eqs. (13)-(14) reduce to 

as,, 
P V ,  - = pg + - - (rSrz) + - 

dT l d  
dz r b r  

dv, i a  
dz r b r  dZ 

pc,v, - = -- - (rqr). 

We shall assume further that the following boundary conditions reasonably 
describe the physical situation under consideration : 

(i) a t  z = 0, v,(O) = VO, T(0) = TO 

(ii) at  z = L, %(L) = V L  

(iii) at  T = R(z), qr[R(z)] = h(T - T,) + Ae(T4 - TU4) 

(17) 

(18) 

(19) 

in which A is the Stefan-Boltzman constant, and e is the emissivity. 

ing equation from r = 0 to r = R(z) ,  we obtain 
Now, multiplying both sides of eq. (15) by rdr and integrating the result- 

where R' is the derivative of R(z) with respect to 2. Noting that the stresses 
at  the surface r = R(z) are given by 

[Srz - R'SZr]r .=~(z)  = - F d  - 2HaR' (21) 

in which Fd is the drag force, u is the surface tension force, and H is the ra- 
dius of curvature given by 

(22) 
R" 

[l + (R')2]]'/' 
- 1 

R[l + ( R ' ) z P  
H =  
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eq. (20) may be rewritten as: 

Again, multiplying both sides of eq. (16) by rdr and integrating the result- 
ing equation from r = 0 to r = R gives 

in which the boundary condition of eq. (19) was used. 

tinuity condition 
We can now further simplify eqs. (23) anc (24) by making use of the con- 

Q = p?rR%, (25) 

where Q is the mass flow rate. Using eq. (25) to eliminate R,  eqs. (23) and 
(24) reduce to 

(27) 
dT - = --? &, {h(T - Ta) + Xe(T4 - To4)). 
dz C, 

Equations (26)-(27) are general working equations whose solutions will de- 
scribe the velocity and temperature profiles of a threadline along the spin- 
way. It should be noted, however, that solution of eqs. (26) and (27) re- 
quires the specification of S,, in terms of the elongation rate dv,/dz. 

Before we present our computational results for specific polymer systems 
chosen for the melt spinning experiment, let us consider a few special cases 
of eqs. (26) and (27). 

Case 1. Isothermal spinning with Newtonian fluid, where the drag force 
is negligible: In this situation, the tensile stress S,, is represented by 

Using eq. (28) and Fd = 0 in eq. (26) gives 

Case 2. Isothermal spinning with a power law-type of elongational vis- 
cosity, represented either by eq. (3) (q > 1) or eq. (5) (q < 1) : In  this situa- 
tion the tensile stress S,, is represented by 
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If we further assume Fd = 0, the use of eq. (30) in eq. (26) gives 

(31) 
Note that eq. (31) reduces to eq. (29) when b = 1 and q = 1, which is as ex- 
pected, in view of the fact that eq. (30) similarly reduces to eq.(28). 

Matovich and Pearson22 have considered the above two cases of isother- 
mal spinning. However, their equations contain an error in the expression 
of the surface tension term, arising from their erroneous expression for the 
axial radius of curvature. Their eq. (8) should read the same as our eq. 

We now return to considering the situation of nonisothermal spinning, for 
which we assume the following: (a) The surface tension force is negligible 
(i.e., u = 0). (b) The drag force is given by the expression due to Sakia- 
d i ~ ~ ~ :  

(22) * 

where po and vo are the density and kinematic viscosity of ambient air, re- 
spectively; p is the density of the threadline being cooled (i.e., p varies with 
temperature); and L is the distance between the spinnerette face (more 
rigorously speaking, a t  a position where the maximum die swell occurs) and 
the position where deformation of the threadline ceases. (c) The heat trans- 
fer coefficient h is represented by the expression due to Kase and Matsuog: 

where ko is the thermal conductivity of ambient air and K is an adjustable 
parameter which depends on the direction of air flow with respect to the 
threadline and also on the fiber-forming polymer. (d) The tensile stress 
S,, is given by 

where a, 0, kl ,  and kz are as defined in eqs. (8). Based on the above assump- 
tions, eqs. (26) and (27) may be rewritten as follows: 
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+ Xe(T4 - !Pa4) . (36) 1 
Now, it is seen that simultaneous solution of eqs. (35) and (36), with the 

aid of boundary conditions (17) and (18), would predict the distributions of 
fiber velocity v,  and temperature T along the spinning way z. Since an 
analytical solution of eqs. (35) and (36) does not appear to exist, one has to 
resort to numerical techniques. Details of the numerical technique em- 
ployed in the present study will be given below when the representative r e  
sults of theoretical predictions will be presented. 

RESULTS AND DISCUSSION 
r 

Having presented a mathematical model for the simulation of the melt 
spinning process, we shall first make a comparison of the theoretically pre- 
dicted and experimentally observed velocity profiles in fibers spun into an 
isothermal chamber. And then, we shall further discuss predictions of ve- 
locity and temperature profiles in nonisothermal spinning. 

Simulation of the Isothermal Melt Spinning Process 

Figures 4 and 5 give some representative results of the velocity profiles in 
high-density polyethylene and polystyrene fibers, respectively. The exper- 
mental techniques employed in the determination of fiber velocities has been 
described in our previous paper.' It is seen in Figures 4 and 5 that agree- 
ment between the experimentally observed and theoretical predicted ve- 
locity profiles are quite satisfactory. Some details of the predicted velocity 
profiles are worth elaborating on. 

First, as may be noted from Figure 1, high-density polyethylene and poly- 
styrene behave differently in the elongational flow field. That is, the elon- 
gational viscosity of high-density polyethylene follows eq. (5) (i.e., region IV 
in Fig. 2), and the elongational viscosity of polystyrene follows eq. (1) (i.e., 
regions IV and V in Fig. 2). Therefore, material constants in the proposed 
generalized, empirical model, eq. (7), had to be determined for the materials 
concerned. This was done by obtaining the best fit of the model, eq. (7) , to 
experimental data (see Fig. 1) by means of a nonlinear least-squares 
method. Table I1 gives a summary of the numerical values of material 
constants for high-density polyethylene, low-density polyethylene, and 
polystyrene. 

Second, although in this particular instance we were interested, for com- 
parison purposes, in obtaining velocity profiles in an isothermal chamber of 
about 10-cm length, we solved both eqs. (35) and (36) stepwise; that is, eq. 
(35) from z = 0.0 to z = 10.0 cm, and then eqs. (35) and (36) from z = 10.0 
to z = L cm. Here, L is the distance at  which the deformation of a fiber is 
assumed to cease. This definition can be somewhat ambiguous for poly- 



3296 LAMONTE AND HAN 

24 

2.2 - 

2.0 - 

1.8 - 

L*} 

I .o 0 L 
2 3 4 5 6 7 8 9 10 

SPINNING WAY (unl 

Fig. 4. Comparison of experimentally observed and theoretically predicted velocity 
profiles in high-density polyethylene fibers. Spinning conditions: Q = 0.025 g/sec; 
VO = 1.598 cm/aec; VL/VO = 8.16; TO = 2U)OC; spinneret diameter, 1.0 mm. 

mers which can undergo considerable cold drawing. In  the present study, 
however, L has been taken as the solidification point of the polymer. 
It should be noted that eqs. (35) and (36) define a boundary value 
problem, because another boundary condition at z = 0, e.g., dv,/dz 
at z = 0, was not available from experiment. However, we have 
considered the boundary value problem as an initial value problem, strictly 
from a computational point of view. In  other words, in carrying out nu- 
merical integration of eqs. (35) and (36), we first guessed dv,/dz at  z = 0 and 

TABLE I1 
Values of Material Constants in Eq. (7) for Materials Investigated 

Sample Temp., 
Material code "C LI B ki ki Q 

polyethyl- (DMDJ4309) 104 
High-density HDPE 220 2.54X 7.8X10' 0.0 0.0017 -0.359 

ene 

POlY- (PEP 211) 
ethylene 

Low-density LDPE 200 48.5 5.67X108 1.0 0.0 - 

Polystyrene Styron 220 0.023 1.44X10' 0.861 0.462 0.0775 
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Fig. 5. Comparison of experimentally observed and theoretically predicted velocity 
Spinning conditions: Q = 0.045 g/sec; VO = 2.17 cm/ profiles in polystyrene fibers. 

sec; VL/VO = 501.7; TO = 2!20°C; spinneret diameter, 1.0 mm. 

proceeded to integrate forward to calculate v z  a t  z = L, VL.  The com- 
puted value of V L  was compared with the specified one, and the numerical 
integration was repeated until the comparison was satisfactory within a pre- 
scribed error limit. Numerical integration was carried out using the fourth- 
order Runge-Kutta predictor-corrector method, and the "shooting" tech- 
nique advanced by Keller2' for successively guessing values of dv,/dz at z = 
0. Details of the computational procedure used are given in Figure 6 in a 
form of flow diagram. 

Figure 7 gives computed temperature profiles of high-density polyethylene 
and polystyrene fibers, spun into an isothermal chamber 10 cm long and into 
the ambient. The flat portion in Figure 7 represents the isothermal cham- 
ber in which no cooling is supposed to occur. It is seen that the fiber tem- 
perature falls rapidly outside the isothermal chamber. 

Simulation of the Nonisothermal Spinning Process 

In the absence of the isothermal chamber, eqs. (35) and (36) were numeri- 
cally integrated from z = 0.0 to z = L by slightly modifying the computa- 
tional procedure given in Figure 6. Representative results of the prediction 
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Fig. 6. Flow diagram of the computational scheme. 

of fiber velocity profiles are given in Figure 8 for high-density polyethylene, 
in Figure 9 for low-density polyethylene, and in Figure 10 for polystyrene. 
Having solved eqs. (35) and (36)) we have been able to calculate the distribu- 
tions of various force components along the spinning way. Table I11 gives 
the force distributions in a high-density polyethylene fiber, Table IV, the 
force distributions in a low-density polyethylene fiber, and Table V, the 
force distributions in a polystyrene fiber. The calculation of the individual 
components of force (i.e., the gravitational force F,,,,, the inertial force Fi,,t , 

1 4 
from z=o t o  z=10.0 c ~ .  

- Solve eq.(35) for v 

Solve eqs.(35) and (36) + from Z=IO.O t o  Z=L 

Compare computed V-L with 
measured one, V i  

* 
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Fig. 7. Predicted temperature profiles in the presence of the isothermal chamber: 
(a) high-density polyethylene at 220°C, Q = 0.0251 g/sec, VL/VO = 8.16; (b) polysty- 
rene at 220°C, Q = 0.0455 g/sec, Vh/V0 = 501.7. 

the drag force Fdrsp, and the rheological force Frhao) was to evaluate the as- 
sociated terms in the equation of motion. 

It is seen in Tables 111 and IV that, in the spinning of high-density 
polyethylene and low-density polyethylene, contributions of both the iner- 
tial and drag forces are negligibly small compared to other components of 
force. This is attributable to the relatively low values of stretch ratio in 
those two materials. However, in the spinning of polystyrene which had a 
very high stretch ratio, contributions of both the inertial and drag forces are 
seen to be significant, as shown in Table V. Earlier, Ishibashi et a1." in 
their study of spinning nylon 6 also found that the contributions of the in- 
ertial and drag forces were significant. 

Another interesting observation that may be made from the solution of 
eqs. (35) and (36) is the distribution of the axial velocity gradient (i.e., 
elongation rate), dv,, dz, along the spinning way. Figure 11 gives repre- 
sentative profiles of dv,, dz for comparison purposes. It should be noted 
that, for a given material, profiles of dv,, dz would vary with stretch rate. 
Note also that in an earlier paper' the authors presented profiles of dv,, dz 
for six fibers spun into an isothermal chamber. It is seen in Figure 11 that 
each material shows different behavior in the axial velocity gradient, far 
from the constant values much speculated on in earlier theoretical studies. 
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TABLE I11 
Force Distributions in a High-Density Polyethylene 

Threadline in Nonisothermal Spinning. 

1.0 
3.0 
5.0 
7.0 
9.0 
13.2 
20.2 
27.0 
30.3 
37.1 

0.1058 
0.0811 
0.0698 
0.0625 
0.0571 
0.0485 
0.0396 
0.0335 
0.0313 
0.0275 

0.0001 
0.0001 
o.Ooo1 
0.0001 
o.Ooo1 
0.0001 
o.Ooo1 
O.OOO2 
O.OOO2 
O.OOO2 

0.0165 
0.0238 
0.0288 
0.0329 
0.0365 
0.0429 
0.0505 
0.0537 
0.0535 
0.0500 

7.4130 
7.3980 
7.3872 
7.3788 
7.3724 
7.3630 
7.3582 
7.4024 
7.4066 
7.4173 

a &  = 0.025g/~ec; Vo = 1.598 C~/WC; VL/VO = 8.16; To = 220OC. 

TABLE IV 
Force Distributions in a Low-Density Polyethylene Threadline 

in Nonisothermal Spinning. 

1.0 
3.0 
5.0 
7.0 
9.0 
12.5 
17.5 
22.5 
25.0 
27.0 

0.0697 
0.0519 
0.0401 
0.0318 
0.0258 
0.0186 
0.0124 
0.0085 
0.0071, 
O.Oo60 

o.Ooo0 
O.oo00 
0.0001 
0.0002 
O.OOO2 
O.OOO4 
0.0007 
0.0016 
0.0022 
0.0030 

0.0047 
0.0068 
0.0095 
0.0127 
0.0163 
0.0232 
0.0332 
0.0413 
0.0433 
0.0426 

0.3474 
0.3274 
0.3132 
0.3034 
0.2970 
0.2924 
0.3025 
0.3200 
0.3324 
0.3461 

a &  = 0.0247g/sec; VO = 1.68cm/sec; VL/VO = 22.28; TO = 200OC 

TABLE V 
Force Distributions in a Polystyhe Threadline in Nonisothermal Spinning. 

Distance, 
cm 

1.0 
3.0 
5.0 
7.0 
9.0 
12.5 
17.5 
22.5 
27.6 
30.1 

Flrav,  B 

0.0811 
0.0398 
0.0212 
0.0122 
0.0075 
0.0037 
0.0017 
0.0008 
0.0005 
O.OOO4 

F h b  

O.OOO4 
0.0017 
0.0052 
0.0137 
0.0315 
0.1041 
0.3983 
1.2851 
3.6999 
5.8000 

Far-, B 

0.0063 
0.0172 
0.0419 
0.0902 
0.1741 
0.4423 
1.1500 
2.2515 
3.3731 
3.4594 

Frhso, B 

2.8697 
2.8532 
2.8529 
2.8699 
2.9123 
3.0916 
3.7071 
5.2149 
7.8046 
9.3881 

a Q = 0.0455 g/sec; VO = 2.17 cm/sec; VL/VO = 501.78; TO = 220°C. 
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Details of the heat transfer involved in melt spinning can also be obtained 
from the solutions of eqs. (35) and (36). Figure 12 gives predicted tem- 
perature profiles in fibers of polystyrene, low-density polyethylene, and 
high-density polyethylene. Note that these profiles are given just to dem- 
onstrate the reasonableness of the mathematical model developed in this 
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4 -  

3 -  

SPINNING WAY ( c d  
Fig. 8. Predicted velocity profiles in nonisothermal spinning of high-density poly- 

ethylene fibers for various stretch ratios: (a) VL/VO = 8.2; (b) VL/VO = 6.1; (c) VL/VO 
= 4.0. Other spinning conditions: Q = 0.025 g/sec; TO = 220OC; T, = 25OC. 

paper. Space limitations here do not permit us to present simulation re- 
sults investigating the effects of various parameters on the characteristics of 
heat transfer. Solution of eqs. (35) and (36) has enabled us to evaluate the 
effect of individual heat transfer mechanisms involved in cooling the molten 
threadlines. 
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SPINNING WAY ( c d  

Fig. 9. Predicted velocity profiles in nonisothermal spinning of low density fibers for 
Spin- various stretch ratios: (a) VL/VQ = 22.3; (b) VL/VO = 17.4; (c) VL/VO = 12.0. 

ning conditions: Q = 0.027 g/sec; VO = 1.68 cm/sec; TO = 200°C; T, = 25°C. 

It has been found that the heat loss due to radiation accounts for (1) in 
high-density polyethylene fibers, approximately 30% of the total heat loss 
near the spinnerette and 10% as the fiber becomes solidified; (2) in low- 
density polyethylene fibers, approximately 20% of the total heat loss near 
the spinnerette and 2% as the fiber becomes solidified; (3) in polystyrene 
fibers, approximately 15% of the total heat loss near the spinnerette and 
less than 0.1% as the fiber becomes solidified. As may be surmised, these 
differences in the role of radiative heat transfer are attributable to the dif- 
ferences in stretch ratios for the materials investigated (see the spinning 
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5 

SPINNING WAY (cmJ 

Fig. 10. Predicted velocity profiles in nonisothermal spinning of polystyrene fibers for 
various stretch ratios: (a) VL/VO = 501.7; (b) VL/VO = 250.7; (c) VL/VO = 100.0. 
Other spinning conditions: Q = 0.045 g/sec; TO = 220°C; T. = 25°C. 

conditions given in Figs. 8 to 10). garlier, Acierno et a1.8 also have taken 
into account the effect of radiation on the total rate of heat transfer in their 
study of spinning polystyrene and low-density polyethylene. They reported 
that radiation accounts for approximately 20% of the total heat loss near 
the spinnerette and 10% as the fiber solidifies. Considering the relatively 
low values of stretch ratio in their study, the predicted results of the heat 
loss due to radiation presented above are in good agreement. Acierno et 
a1.8 used actual measurements of fiber temperature along the spinning way 
in their estimation of the heat losses in melt spinning. 
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Fig. 11. Pdicted elongation rate profiles in nonisotherxnal spinning: (a) polystyrene; 
(b) low-density polyethylene; (c) high-density polyethylene. Other spinning conditions 
same as those given in Figs. 8,9, and 10. 

It may be then concluded that in melt spinning at high stretch ratios, the 
effect of radiative heat transfer on the total heat loss while a filament is be- 
ing stretched and cooled along the spinning way can be neglected, to all in- 
tents and purposes. 

CONCLUSIONS 
Based on the experimental data available in the literature of elongational 

viscosity of polymer melts, a generalized, empirical equation is proposed 
which takes into account the dependence of elongational viscosity on both 
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Fig. 12. Predicted temperature profiles in nonisothermal spinning: (a) high-density 
polyethylene; (b) polystyrene ; (c) low-density polyethylene. Spinning conditions same 
as in Figs. 8,9, and 10. 

elongation rate and temperature. From this, a mathematical model for 
simulating the melt spinning process has been developed. The model has 
been tested against experimentally observed velocity profiles in fibers of 
polystyrene and highdensity polyethyene spun into an isothermal chamber. 
It has been found that predicted velocity profiles agree well with experi- 
mentally observed ones. The mathematical model has been used to predict 
velocity and temperature profiles in fibers spun into a cooling medium. 
The simultaneous solution of momentum and energy balance equation by 
means of a numercial integration scheme has generated important infoima- 
tion such as distributions of force components involved in spinning and dis- 
tributions of the total rate of heat transfer along the spinning way. The 
analysis indicate that, as stretch ratio is increased, both the inertial and 
drag forces become increasingly important, whereas the contribution of ra- 
diative heat transfer to the total heat loss becomes negligibly small. 

The work was supported in part by the National Science Foundation under Grant No. 
GK-23623. 
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